Структура программы что это

Структура (программирование)

Структура — конструкция большинства языков программирования, позволяющая содержать в себе набор переменных различных типов. В языках семейства Pascal структуры традиционно называют записями (англ. record ).

С внедрением концепции объектно-ориентированного программирования понятие структуры было расширено, в частности была добавлена возможность включения в структуру функций-методов, появились ключевые слова для ограничения доступа к элементам структуры. В результате структура стала очень похожа на классы и интерфейсы, однако в большинстве языков сохранила некоторые отличия от них.

Содержание

Пример объявления структуры

Pascal

Отличия от классов

Отличия классов от структур в разных языках разнится. Отличия для языка С#:

Логический • Низший тип • Коллекция • Перечисляемый тип • Исключение • First-class function • Opaque data type • Recursive data type • Семафор • Поток • Высший тип • Type class • Unit type • Void

Абстрактный тип данных • Структура данных • Интерфейс • Kind (type theory) • Примитивный тип • Subtyping • Шаблоны C++ • Конструктор типа • Parametric polymorphism

Полезное

Смотреть что такое «Структура (программирование)» в других словарях:

Программирование — процесс составления упорядоченной последовательности действий (программы (См. Программа)) для ЭВМ; научная дисциплина, изучающая программы для ЭВМ и способы их составления, проверки и улучшения. Каждая ЭВМ является автоматом,… … Большая советская энциклопедия

ПРОГРАММИРОВАНИЕ ТЕОРЕТИЧЕСКОЕ — математическая дисциплина, изучающая математич. абстракции программ, трактуемых как объекты, выраженные на формальном языке, обладающие определенной информационной и логич. структурой и подлежащие исполнению на автоматич. устройствах. П. т.… … Математическая энциклопедия

СТРУКТУРА ИССЛЕДОВАНИЯ: — деятельностная: мотивы – цели – задачи – содержание – формы – методы – критерии – результаты; управленческая: первичный анализ – прогнозирование – программирование – планирование – организация – регулирование – контроль – анализ – корригирование… … Современный образовательный процесс: основные понятия и термины

Класс (программирование) — У этого термина существуют и другие значения, см. Класс. Класс в программировании набор методов и функций. Другие абстрактные типы данных метаклассы, интерфейсы, структуры, перечисления характеризуются какими то своими, другими… … Википедия

Нейро-лингвистическое программирование — Нейролингвистическое программирование (НЛП) (англ. Neuro linguistic programming) (также встречается вариант «нейро лингвистическое программирование») комплекс моделей, техник и операционных принципов (контекстуально зависимых убеждений),… … Википедия

Ретроспектива в программирование — Разработка программного обеспечения Процесс разработки ПО Шаги процесса Анализ • Проектирование • Реализация • Тестирование • … Википедия

Структурное программирование — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Неструктурированное программирование — Структурное программирование методология разработки программного обеспечения, в основе которой лежит представление программы в виде иерархической структуры блоков. Предложена в 70 х годах XX века Э. Дейкстрой, разработана и дополнена Н. Виртом. В … Википедия

Нейролингвистическое программирование: Библиография — Одна из статей на тему Нейролингвистическое программирование (НЛП) Основные статьи НЛП · Принципы · НЛП психотерапия · История Новый код · НЛП и наука · Библиография · Словарь Принципы и методы Моделирование · Метамодель · Милтон модель Позиции… … Википедия

Парадигма (программирование) — Парадигма программирования это совокупность идей и понятий, определяющая стиль написания программ. Парадигма, в первую очередь, определяется базовой программной единицей и самим принципом достижения модульности программы. В качестве этой единицы … Википедия

Источник

10 лет практики. Часть 1: построение программы

Десять лет я пишу на С++. Первые пять лет моей задачей было писать эффективный код для компьютерных игр, потом основным требованием была стабильность, так как речь шла об автоматизации промышленных объектов. Я бы хотел поделиться своим личным опытом и практическими наработками, которые помогут создавать эффективные и в то же время стабильно работающие программы.

Материал разбит на части, от самых общих практических правил, интересных начинающим, до конкретных вопросов, актуальных опытным программистам.
В первой части я на практике дам свой ответ на самые базовые вопросы. Как вообще писать программу, в особенности — сложную программу? Что следует сделать в самом начале, чтобы потом не переделывать с нуля? Как создать оптимальную структуру программы?

Итак, коллеги, мы пишем на С++. Как правило, это значит что наши программы сложны. Некоторые — очень сложны. Чтобы программа работала как нужно мне, её создателю, требуется держать в уме то как она работает, вплоть до мельчайших деталей. Это необходимое условие, так как всё что не удалось полностью продумать — это гарантированные баги.

Удержать в голове всю картину на всех уровнях абстракции одновременно, невозможно. Поэтому я делю сложную систему на куски попроще. Каждый из них хорошо понятен и очевиден, как гвоздь. Всё что сложнее, собирается из более простых элементов. Очевидно? Конечно! Но выполнять это правило нужно неукоснительно.

Если я пишу программу, которая использует неотработанную технологию или элемент, я сначала делаю этюд. Небольшую консольную программку, которая содержит в себе нужный кусок. Этот этюд я мучаю до посинения, пока чётко не пойму как и чего работает, какие ограничения на вводные данные, какие особенности и подводные камни. Да, у меня целая директория из нескольких сотен этюдов. Каждый в конечном итоге доводится до независимого куска кода (чаще всего, класса или связки классов), который я вставляю в программу как батарейку: вытащил старую версию — воткнул новую.

«Склейка» элементов иногда представляет собой довольно сложный механизм сама по себе, а потому требует отдельного этюда. Но этого мало, когда речь идёт о сложных механизмах. Все сложные алгоритмы я записываю на бумагу. Невозможно написать на С++ то, что не можешь описать простым русским языком. Когда описываешь что-то словами, мозг натыкается на подводные камни и нестыковки. Они становятся видны в самом начале, а не в конце, когда код уже написан. Сам текст должен быть отшлифован, тонкие места — упомянуты. Ещё плюс: можно вернуться к проекту через год и не тратить недели на вспоминание почему это сделано именно так.
Для каждого заказчика я завёл по тетради. В них — все нетривиальные моменты, от создания реалистичной пены вокруг парусного фрегата, до вычисления оптимальных траекторий подъёмных кранов на узком пятачке вокруг раскалённых металлов и кислот. Если мне встречается похожая задача, я просто заглядываю в тетрадь. Там, среди перечёркнутых текстов и схемок, за 10-15 минут я воспроизвожу в памяти весь ход создания алгоритма со всеми его особенностями. Как правило, задачи не повторяются полностью, но какая-то идея оказывается нужной через три-четыре года.

Очевидно? Отлично! Чуть усложним и заглянем внутрь элементов, о которых я говорил выше…

С++ очень прост в том смысле, что классы С++ зачастую повторяют описание объектов реального мира (не в смысле прямого копирования, а в смысле названий, частично — функциональности и взаимоотношений, кроме того, в С++ бывают синтетические вспомогательные классы). Когда объект реального мира является или содержит другой объект реального мира (только один), в С++ применяется наследование классов. Если объект-потомок может содержать нескольких однотипных — применяем включение объектов в класс потомка. Однотипное поведение классов выделяем в отдельный класс (который я буду называть классом подмешивания). Всё это отлично расписано у Алена Голуба [2], так что не буду повторять мастерски написанный текст. Скажу только что это простое мнемоническое правило следует запомнить и применять на автомате.

Гораздо менее канонический вопрос в распределении прав доступа к членам и функциям-членам класса. Все конечно знают про инкапсуляцию, все читали книжки. Что со всем этим делать на практике?

На практике происходит следующее. Я делаю класс Бункер, который описывает реальный бункер, к которому подключены датчики. Бункеры объединяются в цеха, всё это выводится в красивый интерфейс, как-то взаимодействует между собой и с человеком.
Спрашивается, сколько внутренней информации о Бункере я открыл другим классам? Отвечаю: вообще ничего. Понимаете? Все члены класса — приватные. Никто извне не должен знать что у класса внутри. Причина ясна: поменял что-то в классе — и цепочка изменений потянулась по всему коду, который за секунду до этого был чист и отлажен как швейцарские часы.
Итак, Бункер не выдаёт наружу подробности своей реализации. При этом, он сам выводит себя в интерфейс, сам обрабатывает нажатия на свои контролы, сам выполняет всю работу, которая требует знания о том, как он устроен. Наружу открываются функции-члены, которые просят класс выполнить ту или иную работу: выведи себя в интерфейс, обработай нажатие мышки, сохрани себя в XML и т.д.

Вы наверное спросите: может не стоило так усложнять, почему бы не сделать классы более открытыми и дружелюбными? «Ни в коем случае» — отвечу я,- и вот почему.
Проходит два месяца работы программы, и заказчик просит меня сделать удалённое управление бункером. Потом удалённое управление требуется по разным каналам связи — от Интернет до сотовой сети и последовательного порта, причём каналы связи должны дублироваться. Время идёт, программа работает, и постепенно выясняется необходимость в удалённой синхронизации журналов действий операторов. А ещё через пару месяцев я выясняю что необходимо делать инкрементальную синхронизацию состояния бункеров и журнала при плохой связи (например, зашумлённый RS-485 или Wi-Fi на больших расстояниях).

Что я сделал? Я усложнил класс Бункер, который теперь работает либо локально, либо удалённо. Добавил ещё кое-какой код, который подхватывает настройки GSM/Ethernet/RS-232. И главное: всё остальное осталось как было. Все месяцы работы по тонкой настройке алгоритмов управления остались со мной! То же самое относилось и к журналу, и ко всему остальному.
Если бы я вынес наружу хотя бы что-то из внутренней кухни Бункера, я даже боюсь представить сколько всего мне пришлось бы переписывать из 250 кБ управляющего кода.

Ещё раз повторю важный момент: структура программы на С++ отличается от С с точностью до наоборот. Там у нас были структуры и общие переменные. Здесь у нас объекты, которые суть чёрные ящики. Каждый объект — сам себе жнец, швец, на дуде игрец.
С другой стороны, сам код класса должен быть простым. Если требуется сложный функционал, я реализую его включением в класс внутренних объектов-помощников, либо использую классы подмешивания (но более осторожно, поскольку наследование является более сильной формой сцепления, чем включение).

Напоминаю, что get/set доступ — это чуть более завуалированный вариант открытого члена класса. С этим подходом нам не по пути.

Правильный способ взаимодействия с объектом — попросить его сделать то или иное действие.
Вместо того чтобы запрашивать данные, просим объект сделать нужное действие самостоятельно. Это необходимое условие стабильности больших проектов на С++. В некоторых случаях реализация какого-то действия — просто вернуть значение члена класса (то самое исключение, которое подтверждает правило).

И последнее. Любая структура имеет ограниченный потенциал роста. Возможно, заказчик затребует такие глобальные изменения, что потребуется менять интерфейс взаимодействия между классами. Более того, может потребоваться менять структуру классов. Но и это ещё не всё: есть объективные временные рамки на обкатку программы, в ходе которых становится очевидной необходимость создать новую структуру классов.

Хочу успокоить: всё это совершенно нормально. Программой пользуются — значит программа живёт, а значит меняется и развивается её структура. Прежде чем программа станет действительно хорошей, её, почти наверняка, придётся несколько раз переписать (мои самые серьёзные программы, как правило, переписываются дважды или трижды). Такая программа обладает отличным потенциалом роста, она больше не страдает «детскими болезнями» и, как правило, работает как те самые швейцарские часы. А все наработки из прошлой версии переносятся тем проще, чем более изолированными были изначальные классы.

Источник

Урок №8. Структура программ

Компьютерная программа — это последовательность инструкций, которые сообщают компьютеру, что ему нужно сделать.

Стейтменты

Cтейтмент (англ. «statement») — это наиболее распространенный тип инструкций в программах. Это и есть та самая инструкция, наименьшая независимая единица в языке С++. Стейтмент в программировании — это то же самое, что и «предложение» в русском языке. Мы пишем предложения, чтобы выразить какую-то идею. В языке C++ мы пишем стейтменты, чтобы выполнить какое-то задание. Все стейтменты в языке C++ заканчиваются точкой с запятой.

Есть много разных видов стейтментов в языке C++. Рассмотрим самые распространенные из них:

int х — это стейтмент объявления (англ. «statement declaration»). Он сообщает компилятору, что х является переменной. В программировании каждая переменная занимает определенное число адресуемых ячеек в памяти в зависимости от её типа. Минимальная адресуемая ячейка — байт. Переменная типа int может занимать до 4 байт, т.е. до 4 адресуемых ячеек памяти. Все переменные в программе должны быть объявлены, прежде чем использованы. Мы детально поговорим о переменных на следующих уроках.

std::cout — это стейтмент вывода (англ. «output statement»). Мы выводим значение переменной х на экран.

Выражения

Функции

В языке C++ стейтменты объединяются в блоки — функции. Функция — это последовательность стейтментов. Каждая программа, написанная на языке C++, должна содержать главную функцию main(). Именно с первого стейтмента, находящегося в функции main(), и начинается выполнение всей программы. Функции, как правило, выполняют конкретное задание. Например, функция max() может содержать стейтменты, которые определяют большее из заданных чисел, а функция calculateGrade() может вычислять среднюю оценку студента по какой-либо дисциплине.

Библиотеки

Библиотека — это набор скомпилированного кода (например, функций), который был «упакован» для повторного использования в других программах. С помощью библиотек можно расширить возможности программ. Например, если вы пишете игру, то вам придется подключать библиотеки звука или графики (если вы самостоятельно не хотите их создавать).

Язык C++ не такой уж и большой, как вы могли бы подумать. Тем не менее, он идет в комплекте со Стандартной библиотекой С++, которая предоставляет дополнительный функционал. Одной из наиболее часто используемых частей Стандартной библиотеки C++ является библиотека iostream, которая позволяет выводить данные на экран и обрабатывать пользовательский ввод.

Пример простой программы

Теперь, когда у вас есть общее представление о том, что такое стейтменты, функции и библиотеки, давайте рассмотрим еще раз программу «Hello, world!»:

Строка №1: Специальный тип инструкции, который называется директивой препроцессора. Директивы препроцессора сообщают компилятору, что ему нужно выполнить определенное задание. В этом случае мы говорим компилятору, что хотели бы подключить содержимое заголовочного файла к нашей программе. Подключение заголовочного файла дает нам возможность использовать функционал библиотеки iostream, что, в свою очередь, позволяет выводить нам данные на экран.

Строка №2: Пустое пространство, которое игнорируется компилятором.

Строка №3: Объявление главной функции main().

Строки №4 и №7: Указываем компилятору область функции main(). Всё, что находится между открывающей фигурной скобкой в строке №4 и закрывающей фигурной скобкой в строке №7 — считается содержимым функции main().

Строка №6: Оператор возврата return. Когда программа завершает свое выполнение, функция main() передает обратно в операционную систему значение, которое указывает на результат выполнения программы: успешно ли прошло выполнение программы или нет.

Синтаксис и синтаксические ошибки

Как вы, должно быть, знаете, в русском языке все предложения подчиняются правилам грамматики. Например, каждое предложение должно заканчиваться точкой. Правила, которые регулируют построение предложений, называются синтаксисом. Если вы не поставили точку и записали два предложения подряд, то это является нарушением синтаксиса русского языка.

Язык C++ также имеет свой синтаксис: правила написания кода/программ. При компиляции вашей программы, компилятор отвечает за то, чтобы ваша программа соответствовала правилам синтаксиса языка C++. Если вы нарушили правила, то компилятор будет ругаться и выдаст вам ошибку.

Например, давайте посмотрим, что произойдет, если мы не укажем в конце стейтмента точку с запятой:

Источник

1. Язык программирования и программа

1.1. Структура программы и языка программирования

Изучение программирования нельзя начать, не ответив на ряд вопросов: а что же такое программа, алгоритм, данные, язык программирования. В этом списке основным термином является алгоритм, который, как и большинство понятий общего вида, имеет множество определений. Например:

«Алгоритм — это конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность». ( Д. Э. Кнут)

«Алгоритм — это точное предписание, определяющее вычислительный процесс, идущий от варьируемых исходных данных к искомому результату». ( А. Марков).

Компьютерная программа, в отличие от абстрактного алгоритма, имеет собственные элементы, над которыми она совершает действия, и которые являются ее составной частью. Это – данные. Таким образом, она представляет собой замкнутую систему, отделенную от внешней среды. Посмотрим, из каких еще частей состоит компьютерная программа. Все они должны выражаться в соответствующих компонентах языка программирования:

· в языке программирования имеются средства описания данных, которые позволяют программисту конструировать различные формы их представления – типы данных;

· вторая основная компонента программы – описание порядка, последовательности выполняемых действий, также называется алгоритмом «в узком смысле», или алгоритмической компонентой. Она обычно состоит из двух частей. Первая часть – выражения, представляет собой описание линейной последовательности выполнения простейших действий из набора операций (арифметические операции, присваивание, условные выражения). Они включаются во вторую компоненту – операторы, которые задают ту или иную последовательность действий;

· как уже отмечалось, программа работает исключительно с данными, что и определяет сущность алгоритма. В наборе операций имеются команды ввода-вывода, осуществляющие обмен данными между переменными и внешней средой (посредством устройств ввода-вывода). С «программно-эгоцентрической» точки зрения это выглядит чистой формальностью и не является существенной частью программы;

Любая программа выполняется в компьютере. Посмотрим, как соотносятся между собой компоненты программы и компьютерной архитектуры:

· компоненты программы находятся в памяти. В принципе, память является общей для них всех, но логически она разделяется на области, именуемые сегментами. Прежде всего, это сегмент данных, содержащий, естественно, данные программы. Алгоритмическая компонента (выражения, операторы) также находится в памяти в собственном сегменте команд;

И, наконец, язык программирования также содержит в себе компоненты, предназначенные для описания соответствующих частей программы:

· средства описания данных: определение типов данных (форма представления) и переменных;

· набор операций над основными типами данных (включая ввод-вывод), а также средства записи выражений;

· набор операторов, определяющих различные варианты порядка выполнения выражений в программе (последовательность, условие, повторение, блок);

· средства разбиения программы на независимые части – модули (функции, процедуры), взаимодействующие между собой через программные интерфейсы.

Определение программы уже давно дано в простой формуле: «Программа = алгоритм + данные». Но в ней алгоритм и данные не просто «складываются» в одно целое как независимые части, но являются двумя взаимозависимыми элементами. Это своего рода «Янь и Инь» программы, олицетворяющие единство и борьбу двух противоположных начал (в философии этот принцип положен в основу диалектики – учения о развитии). Попробуем привести несколько аналогий, поясняющих сущность взаимодействий в этой «парочке»:

· если данные можно в какой-то мере обладают свойствами пространства (объем, протяженность), то алгоритм – свойствами времени (эффективность, быстродействие). Тезис «проигрывая в пространстве, выигрываем во времени» здесь также уместен: эффективность программ может быть принципиально повышена за счет использования дополнительных структур данных в памяти;

· c интаксически данные являются аналогом существительных (объектов, над которыми производятся действия), набор операций – аналогом глаголов (выполняемых действий). Программа в целом аналогично предложению, описывающему процесс – последовательность действий над заданными предметами с целью получения результата.

Взаимосвязь алгоритма и данных в программе не является простой и линейной. Процесс выполнения любой программы можно рассматривать с двух точек зрения: как последовательность выполнения операций (команд), в которых содержится информация об операндах (данных), которые они обрабатывают – поток команд (поток управления). С другой стороны – любой элемент данных можно рассматривать как результат выполнения действий над исходными данными и как источник данных (операнд) для последующих результатов. Т.е. в программе также присутствует логическая последовательность вычислений (преобразований данных), называемая потоком данных. Исторически сложилось, что в традиционной (фон Неймановской) архитектуре в программе в явном виде задается последовательность команд, т.е. программа выглядит как поток управления, в котором алгоритмическая компонента является первичной (ведущей), а данные – вторичной (ведомой).

Для начинающего программиста непривычным является «программный эгоцентризм»: ввод-вывод инициализируется не пользователем, а программой, которая является активной компонентой и инициатором диалога. Т.е. не пользователь ведет диалог с программой, а программа запрашивает у него необходимые данные. Другое дело, что «правильные» программные системы работают в режиме «всегда готов», но очевиден и другой факт: если программа не требует ввода, а «крутится где-то в другом месте», то принудить ее в приему данных ничем нельзя.

Источник

7.1. ПОНЯТИЕ СТРУКТУРЫ ПРОГРАММЫ

7.1. ПОНЯТИЕ СТРУКТУРЫ ПРОГРАММЫ

Структура программы — искусственно выделенные программистом взаимодействующие части программы. Использование рациональной структуры устраняет проблему сложности разработки; делает программу понятной людям; повышает надежность работы программы при сокращении срока ее тестирования и сроков разработки вообще.

Часто некоторую последовательность инструкций требуется повторить в нескольких местах программы. Чтобы программисту не приходилось тратить время и усилия на копирование этих инструкций, в большинстве языков программирования предусматриваются средства для организации подпрограмм. Таким образом, программист получает возможность присвоить последовательности инструкций произвольное имя и использовать это имя в качестве сокращенной записи в тех местах, где встречается соответствующая последовательность инструкций. Подпрограмма — некоторая последовательность инструкций, которая может вызываться в нескольких местах программы.

Описание подпрограммы (функции или процедуры) состоит из двух частей: заголовка и тела. Заголовок содержит идентификатор подпрограммы. Тело состоит из одной или нескольких инструкций. Идентификатор подпрограммы используется в качестве сокращенной записи в тех местах программы, где встречается соответствующая последовательность инструкций.

Вряд ли стоило подробно говорить о столь простой форме записи, если бы за ней не скрывались важные и основополагающие понятия. В действительности процедуры и функции, называемые подпрограммами, являются одним из тех немногих фундаментальных инструментов в искусстве программирования, которые оказывают решающее влияние на стиль и качество работы программиста.

Процедура — это не только способ сокращения программного текста, но и, что более важно, средство разложения программы на логически связанные, замкнутые элементы, определяющие ее структуру. Разложение на части существенно для понимания программы, особенно если программа сложна и трудно обозрима из-за большой длины текста. Разложение на подпрограммы необходимо как для документирования, так и для верификации программы. Поэтому желательно оформлять последовательность инструкций в виде подпрограммы, даже если подпрограмма используется однократно и, следовательно, отсутствует мотив, связанный с сокращением текста программы.

Дополнительная информация о переменных (которые передаются и используются в процедуре) или об условиях, которым должны удовлетворять аргументы, задается в заголовке процедуры. О полезности процедуры, в частности о ее роли при структуризации программы, неоспоримо свидетельствуют еще два понятия в программировании. Некоторые переменные (их обычно называют вспомогательными или локальными переменными), используемые внутри процедуры, не имеют смысла за ее пределами. В программе существенно проще разобраться, если явно указаны области действия таких переменных. Процедура выступает как естественная текстовая единица, с помощью которой ограничивается область существования так называемых локальных переменных.

Вероятно, наиболее общая тактика программирования состоит в разложении процесса на отдельные действия: функционального описания на подфункции, а соответствующих программ — на отдельные инструкции. На каждом таком шаге декомпозиции нужно удостовериться, что решения частных задач приводят к решению общей задачи; выбранная последовательность отдельных действий разумна; выбранная декомпозиция позволяет получить инструкции, в каком-либо смысле более близкие к языку, на котором будет реализована программа.

Последнее требование исключает возможность прямолинейного продвижения от первоначальной постановки задачи к конечной программе, которая должна получиться в конечном итоге. Каждый этап декомпозиции сопровождается формулированием частных подпрограмм. В процессе этой работы может обнаружиться, что выбранная декомпозиция неудачна в том смысле хотя бы потому, что подпрограммы неудобно выражать с помощью имеющихся средств. В этом случае один или несколько предыдущих шагов декомпозиции следует пересмотреть заново.

Если видеть в поэтапной декомпозиции и одновременном развитии и детализации программы постепенное продвижение вглубь, то такой метод при решении задач можно охарактеризовать как нисходящий (сверху вниз). И наоборот, возможен такой подход к решению задачи, когда программист сначала изучает имеющиеся в его распоряжении вычислительную машину и/или язык программирования, а затем собирает некоторые последовательности инструкций в элементарные процедуры, типичные для решаемой задачи. Элементарные процедуры затем используются на следующем уровне иерархии процедур. Такой метод перехода от примитивных машинных команд к требуемой реализации программы называется восходящим (снизу вверх).

На практике разработку программы никогда не удается провести строго в одном направлении (сверху вниз или снизу вверх). Однако при конструировании новых алгоритмов нисходящий метод обычно доминирует. С другой стороны, при адаптации программы к несколько измененным требованиям предпочтение зачастую отдается восходящему методу.

Оба метода позволяют разрабатывать программы, которым присуща структура — свойство, отличающее их от аморфных линейных последовательностей инструкций или команд машины. И чрезвычайно важно, чтобы используемый язык в полной мере отражал эту структуру. Только тогда окончательный вид полученной программы позволит применить систематические методы верификации.

Читайте также

Понятие о стилях CSS

Понятие о стилях CSS Для создания представления Web-страниц предназначена технология каскадных таблиц стилей (Cascading Style Sheets, CSS), или просто таблиц стилей. Таблица стилей содержит набор правил (стилей), описывающих оформление самой Web- страницы и отдельных ее фрагментов. Эти

1.4.8. Понятие о монтировании

1.4.8. Понятие о монтировании Особого внимания заслуживает операции монтирования. На вашем жестком диске, кроме Linux-разделов, есть разделы других операционных систем (например, Windows). Для того чтобы получить доступ к файлам, находящимся в этих разделах, вам нужно

Понятие об ODS

55. Понятие системы VВА

55. Понятие системы VВА VBA представляет собой подмножество VB и включает средства образования приложений VB, его структуры данных и управляющие структуры, возможность создания пользовательских типов данных. Также как и VB, VBA является системой визуального программирования,

Понятие выделения

Понятие выделения Создавая выделение, мы обозначаем в документе область, с которой хотим работать, а вся остальная часть документа для редактирования становится недоступной. Это правило справедливо для всех случаев, когда мы работаем с инструментами и командами

Понятие шаблона

Понятие шаблона Для упрощения работы по созданию и форматированию текстов, стандартизации расположения и оформления текста, графики, типизации операций обработки документов и прочего используются шаблоны документов. Пакет Microsoft Office дает различные определения шаблона

5. Понятие индексов

5. Понятие индексов Создание ключей в базовых отношениях автоматически связано с созданием индексов.Дадим определение понятия индекса.Индекс – это системная структура данных, в которой размещается обязательно упорядоченный перечень значений какого-либо ключа со

Понятие текстуры

Понятие текстуры Бытует мнение, что текстура — это изображение, накладываемое на трехмерную модель. Данное утверждение совершенно не верно. Изображение, накладываемое на модель в рамках текстуры, называется картой (Map), понятие же текстуры — шире.Текстура в 3ds Max

9.1. Понятие о моделях

9.1. Понятие о моделях Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные из них. Так, модель самолета должна иметь геометрическое подобие оригиналу, модель атома – правильно отражать

4.1. ПОНЯТИЕ СТРУКТУРЫ ДАННЫХ ПРОГРАММ

4.1. ПОНЯТИЕ СТРУКТУРЫ ДАННЫХ ПРОГРАММ Под структурой данных программ в общем случае понимают множество элементов данных, множество связей между ними, а также характер их организованности.Под организованностью данных понимается продуманное устройство с целью

Понятие доверия

Понятие доверия Новым популярным словом двадцать первого века стало слово «доверие». Доверие затрагивает многие стороны жизни людей, начиная от экономической, финансовой, деловой сфер и заканчивая принятием политических решений. Доверие требуется при приобретении

Источник

Операционные системы и программное обеспечение